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Abstract. Performing numerical simulations of open quantum dots, we reproduce the zero field
resistance peaks seen experimentally, a phenomenon previously attributed to weak localization.
Our results show however that these peaks can have a different origin, involving conductance
resonances that reflect the underlying spectrum. Even with ensemble averaging, we find that the
shape of the resistance peak can be more of a probe of these resonances than of the dynamics of
the dot.

A common feature found in experiments on quantum dots is a peak in the resistance at zero
magnetic field. In one theory [1], these peaks have been attributed to weak localization arising
from interference between back-scattered trajectories. This theory also predicts that the shape
of the peak depends on whether the cavity dynamics is chaotic or regular. Two important
aspects of this theory are: (i) it is valid for cases where ¯h/τ0 is large compared to the mean
level spacing,τ0 being the escape time, and (ii) to obtain the lineshapes, an integration over
all wavenumbers,k, was performed. A large dot with wide openings is required for (i). The
implication of (ii) is that any experimental comparison requires that alargeensemble average
be performed. Attempts at comparison have been made by: considering multiple arrays
of similarly configured devices [2], considering individual devices, but averaging over gate
voltage [3–6], disrupting the phase coherence by thermal cycling [7, 8], measuring devices at
finite temperature [7–9] and constructing devices in whichk could be independently varied
[10]. However, in many instances, the dots were relatively small and had only a few modes in
the quantum point contacts (QPCs). Moreover, apparent agreement with the theory has been
achieved by exploring fairly small regions ofk space [5–11]. Thus, it was questionable that
the above criteria were being satisfied.

The weak localization peak in a chaotic cavity is predicted to take the Lorentzian form
[1]:

R(B) = R0 +
1

[1 + (2B/αφ0)2]
(1)

whereR(B) is the resistance at magnetic fieldB, φ0 = h/e,R0 is the resistance in the absence
of localization, andα−1 is a parameter that represents the area enclosed by a typical trajectory
(this can be substantially larger than the cavity size). For a regular cavity, a linear lineshape
is expected, however there is no formula that can be used for fitting. With regards to the
experiments, Changet al [2], found that an ensemble of stadium cavities obeyed equation (1),
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while a circular ensemble did not. On the other hand, Berryet al [5] and Leeet al [6] found that
circular cavities instead yielded Lorentzian lineshapes. Studying a number of different cavity
shapes, Leeet al [6] found that only a rectangular cavity gave linear behaviour. However,
Bird et al [7] found that rectangular cavities could yieldbothLorentzian and linear lineshapes.
These apparently contradictory observations raise the questions: is a Lorentzian lineshape
a reliable indicator of chaos? If not, could there be another explanation for the observed
lineshapes?

To resolve this issue, in this paper we present results that suggest that the presence of the
zero field resistance peaks may be attributed to a phenomenon other than weak localization. In
the semi-classical theory of dots, the energy spectrum is given by theclosedtrajectories [12].
In our simulations, we obtain zero field peaks, but find that they arise from the fundamental
properties of this energy spectrum, and not from weak localization. We consider two situations:
a square dot for which we have calculated the conductance,G against energy,E, and magnetic
field,B, and a dot with a realistic soft potential obtained self-consistently, permitting us to study
G(Vg, B), whereVg is applied gate voltage. For the square dot, the dynamics should be regular,
but for the realistic dot profile, the potential rounding should yield chaotic boundary scattering
[13]. We find thatG(E,B) andG(Vg, B) are prominently striated by lines of resonances.
These resonances tend to correspond to states scarred by periodic orbits [14, 15]. Performing
ensemble averages overG, we obtain resistance peaks that are strikingly similar to those seen
experimentally. With regards to the peak lineshape, we find that the dot geometry appears to be
of secondary importance. In particular, a transition between Lorentzian and linear lineshape
can be obtained in the square dot and we find that both dots give similar results, when suitable
averages are taken.

Our simulations were performed on a discrete lattice using a numerically stabilized variant
of the transfer matrix approach [16]. The dot is enclosed inside a waveguide which extends
a finite number of lattice sites in the transverse (y) direction. The structure is broken down
into a series of slices along the longitudinal (x) direction. Imposing an electron flux from
the left, one translates across successive slices and, on reaching the end, one obtains the
transmission coefficients which enter the Landauer–Büttiker conductance formula. For the
realistic confining potential, the simulated structure consists of a split gate sitting on top of a
GaAs–AlGaAs heterostructure. Finding the solutions for the potential requires solving the 3D
Poisson equation, then solving the 1D Schrödinger equation and reconciling the potential and
electron density in an outer iteration for self-consistency [17, 18].

In figure 1, we show how the conductance for an open quantum dot relates to the closed
dot spectrum. A generic formula for G reveals the relationship to the density of states (DOS)
[19]:

G ∼ e2

2m2

∫
d2p

(2π)2
p2
∫ ∞

0

dE

2π
[A(p,E)]2

(
−dfFD

dE

)
(2)

whereA(p,E) is the spectral density (the integral overA(p,E) with respect to momentum,
p, yields the DOS). Hence, a study ofG should show a correspondence to the DOS and the dot
energy levels. Figure 1(a) shows part of the spectrum as a function ofB for a closedsquare
dot of side 0.3µm. The spectral lines form a ‘winged’ pattern with an ‘eye’ in the centre.
Figure 1(b) shows the corresponding conductance,G(E,B) for an open dot (the configuration
is shown in the inset of figure 1(c)). Here the QPCs allow two modes.G(E,B) clearly shows
the influence of the closed dot DOS, as the basic pattern is reproduced. The match is not exact
since opening the dot broadens the energy levels. Importantly, this broadening isnot uniform.
The QPCs create a collimation effect that preferentially excites particular orbits [14, 20, 21].
Moreover, certain orbits are automatically disallowed by the presence of the QPC openings.
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Figure 1. (a)E againstB for a closed 0.3µm square dot. (b)G(E,B) for a corresponding open
dot. (c)R againstB, whereR is the resistance obtained by averaging over all conductance traces
in (b). Inset: the open dot configuration.

This orbit selection is crucial in determining which closed dot states survive [20, 21]. Thus,
certain spectral lines are very strongly reflected byG, while others are weak or completely
absent (a uniform broadening model [22] for the coupling from the QPCs to the dot states
will not pick up this subtlety). Along many of the spectral lines, resonant minima occur in
close proximity to maxima. This is because resonances tend to have a Fano lineshape that
combines both in open structures [23]. A deep trough occurs between 4.2 and 4.3 meV, where
two spectral lines are degenerate. Figure 1(c) shows the resistance,R, obtained after ensemble
averaging over all the traces shown in figure 1(b). Features inR clearly can be related back to
the underlying DOS. The small central peak results from the ‘eye’ while the side peaks result
from the minima that occur at two crossings of spectra lines. The dominant feature is a plateau
resulting from the trough.

Figure 2(a) showsG(E,B) for this dot, but over a larger energy range. Lighter shading
corresponds to higherG. Note that many features recur quasi-periodically. Specifically,
‘diamond’ patterns are formed by sets of angled, almost parallel, lines of resonances. Inside
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Figure 2. (a)G(E,B) is plotted for the 0.3µm square dot. (b)R againstE andB, where the
traces were obtained by averagingG in (a) over a 1.5 meV window. (c)R againstB for two traces
obtained by averaging over the ranges shown in (a). The dotted line is a Lorentzian fit.

the diamonds, triangular patterns occur due to crossing resonance lines. It is clear that the
resistance peak atB = 0 is not a general feature of the individual traces. Ensemble averages
are required to obtain a peak in all cases. Figure 2(b), a plot ofR againstE andB, shows a
result of such a calculation. Each trace was obtained by averagingG(E,B) over a window of
1.5 meV. Importantly,this window is larger than the period of the recurring diamond pattern.
If the window is small compared to this period,then a peak will not always result. The higher
resistance traces shown in the upper part of figure 2(b) correspond to averages over the lower
ranges of figure 2(a). While the peak is now universal, its lineshape clearly evolves withE.
Traces (i) and (ii) shown in figure 2(c) were obtained by averaging over the ranges indicated
in figure 2(a). Trace (i) appears linear, the prediction [1] for regular structures. Trace (ii)
can be fitted (the dotted line) to the Lorentzian form of equation (1), usingR0 = 12.07 k�,
1 = 0.82 k� andαφ0 = 6.82 mT. Here,α−1 ∼ 7 A, whereA is the dot area. While a
transition from linear to Lorentzian lineshapes has been induced in experimental studies of
small dots [7, 8], and has been attributed to a transition from regular to chaotic scattering,
such a scattering change is not possible in figure 2(c), in which the dot geometry is constant.
Rather the reason for the lineshape change is that we are now averaging over a different energy
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Figure 3. (a)G(E,B) is plotted for the 0.3µm square dot. (b)R againstE andB, resistance
average over (a). (c)G(E,B) again, but for a larger range. (d)R againstB, the resistance average
over (c). The dotted lines in (b) and (d) are Lorentzian fits.

range, so different spectral features get mapped into the resistance. With regards to trace (ii), a
‘hole’ in G at∼8.71 meV (lower arrow) is primarily responsible for the Lorentzian peak. This
feature is enlarged in the right inset and is an example of resonantreflectionfrom a quasi-bound
state (the wave function in the left inset). Such resonant reflections were first noted for T-stub
structures [24]. The trough indicated by the upper arrow creates the plateau. The features in
region (i) are softer, leading to the more uniform lineshape.

Figure 3 shows how increasing the averaging range changes lineshape. Figure 3(a) shows
G(E,B) for 13.7< E < 14.5 meV. This corresponds to only a portion of a diamond. Evident
here is a triangular feature whose bottom is defined by a deep resonance line and is cut in
half by a second line creating an inner triangle. The averaged resistance in figure 3(b) shows
a peak and two shoulder-like features that coincide with the bottom corners of the larger
triangle (arrow 1), while the inflection points where the shoulders emerge correspond to the
corners of the inner triangle (arrow 2). Shoulders are a common feature seen experimentally
(for example, see figure 1(b) of [2]). The dotted line is the almost perfect Lorentzian fit, with
R0 = 6.85 k�,1 = 0.4 k�andα0 = 16 mT. Here,α−1 ∼ 3A. Figure 3 (c) showsG(E,B) for
12< E < 16 meV, which contains the smaller range as a subset. In this case, several diamonds
are included and the resulting averaged lineshape has to a large degree saturated as a result of
their quasi-periodicity. The averaged resistance (figure 3(d)) indicates that other features are
dominant over the larger range. The inflection points are gone and there is barely a trace of the
original shoulders (arrow 1). New shoulders coincide with other resonance crossings (arrows
2 and 3). The peak is now much wider andappearsto belinear. This however is a plotting
artifact—this peak can be fitted (dotted line) very well usingR0 = 6.9 k�, 1 = 0.31 k�
andαφ0 = 55 mT. Now,α−1 ∼ A. Thus, significantly different values ofα−1 result by
changing the averaging range. Again, since dot geometry is fixed, it is unlikely that a change
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in dynamics accounts for this. Experimentally, the cavities of Berryet al [5] gaveα−1 ∼ 3A,
while other authors foundα−1 ∼ A [2, 6, 7]. Importantly, a narrow peak can also be obtained
in our simulations by using the larger range, but doing an incomplete average that skips over
many traces. In experiment, such limited sampling can be unavoidable (Berryet al [5] for
example averaged over only five traces for their results).

Referring back to the linear peak shown in figure 2(c), like all the other lineshapes we have
shown, it has a rounded top. However, it appears linear because the conductance resonances in
that case contribute so weakly that they do not appear to create shoulders (they are present, but
are barely noticeable). From the progression shown in figure 2(b), it appears that it is the rise
of such shoulder features that turns a linear peak into a Lorentzian. Since resistance traces will
generally have rounded features, it makes it exceedingly difficult to truly distinguish between
the two cases.

In figure 4, we show results for the realistically modelled dot. For the heterostructure,
we used the same parameters as in an earlier simulation [17]. The simulated top gates define
a dot of side 0.4µm with QPCs 0.1µm wide. Applying a bias reduces dot size and QPC
width. A typical self-consistent profile is shown in figure 4(a) and has a bowl shape expected
to create chaotic behaviour classically. While the effective size changes withVg, this basic
shape does not, so a change in dynamics is not expected. WithE = 15 meV in the external
reservoirs, the QPCs support five or six modes over the bias range considered. In figure 4(b),
we plotG(Vg, B). As withG(E,B), striations which reflect the underlying DOS are present,
forming a ‘honeycomb’ of diamonds. The averaged resistance is shown in figure 4(c). Similar
to figure 3(d), the energy averaged peak appears linear but can be fitted using equation (1)
(dashed line,R0 = 2.59 k�, 1 = 0.095 k� andαφ0 = 35 mT). Here,α−1 ∼ A, a result
similar to that obtained above for the square. As above, shoulders appear that are a cumulative
result of the resonances that occur at major non-zero line crossings (note the arrows) and that
averaging over several diamonds has caused some convergence of this lineshape. What is
different about this ostensibly chaotic dot? While sharing some similar qualitative features,
the underlying striation pattern is clearly different. Moreover, the sets of states that yield
these striations in the two geometries can also be quite different. There are resonant states
that occur in the rounded geometry that are impossible in the square geometry and vice
versa.

The conventional view is that zero field resistance peaks are weak localization effects
[1]. While formula (1) was obtained after averaging, these effects, if real, should be present
even without averaging. In traces where the peak does not appear, the contention was that it
was being obscured by fluctuations (i.e. the resonances we have shown) and that the effect of
the ensemble averaging was to average theseout to reveal an underlying peak [1]. We argue
that the opposite is happening. There is no underlying peak and ensemble averaging simply
averages these fluctuationsin. Recall that the plateau in figure 1(c) was generated by a trough
in G. While conductance minima obviously occur along individual spectral lines, they tend
to be more strongly weighted the more states are involved (it was the coincidence of spectral
lines that yielded the strongest features in figure 1(b)). The location where there is the greatest
density of spectral lines coinciding is atB = 0, the point ofmaximum degeneracy(there are
twoB = 0 states for eachB 6= 0 state). FiniteB lifts the degeneracy (see figure 1(a)). When
shoulder peaks are present, these coincide with the positions of major line crossings, where a
local increase in degeneracy has lead to deeper relative minima inG. It is worth reiterating an
important point made above, namely that to obtain a zero field peak in all instances requires
that the averaging be done over a range larger than the diamond resonance patterns in the
conductance. This is compelling evidence that the peaks are strongly tied to the presence of
resonances at zero field.
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Figure 4. (a) A potential obtained self-consistently. (b)G(Vg, B) for the self-consistently modelled
dot. (c)R againstB, whereR was obtained by averaging over all of (b). The dotted line is a
Lorentzian fit.

In summary, we have shown that the conductance of a ballistic quantum dot displays
features that reflect the details of its underlying spectrum. Energy averaging does not destroy
this dependence. Instead, zero field peaks and corresponding structure such as shoulders appear
to be a reflection of conductance resonances and not an additive effect such as weak localization.
Since our simulations do not generally meet the criteria mentioned in the first paragraph, we
cannot conclude that the weak localization theory is invalid in that limit. However, it is clear
that the resonance phenomena we have discussed can cause virtually indistinguishable effects.
Moreover, shoulder side peak features, commonly observed in experiment, havenoexplanation
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in the weak localization theory. Various resistance lineshapes and linewidths, including both
linear and Lorentzian shapes, can be obtained in asingledot. Comparing regular and chaotic
geometries, we obtain qualitatively similar results. As such, the mere presence of a particular
lineshape cannot be used to ascertain whether the dynamics is regular or chaotic, even with
averaging. This conclusion is consistent with the varied results obtained in recent experiments.
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